કોઈ પણ $\theta \, \in \,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$ માટે, $3\,{\left( {\sin \,\theta  - \cos \,\theta } \right)^4} + 6{\left( {\sin \,\theta  + \cos \,\theta } \right)^2} + 4\,{\sin ^6}\,\theta $ =

  • [JEE MAIN 2019]
  • A

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

  • B

    $13 - 4\,{\cos ^6}\,\theta \,$

  • C

    $13 - 4\,{\cos ^2}\,\theta \, + 6\,\,{\cos ^4}\,\theta $

  • D

    $13 - 4\,{\cos ^4}\,\theta \, + 2\,{\sin ^2}\,\theta \,{\cos ^2}\,\theta $

Similar Questions

$\sin {163^o}\cos {347^o} + \sin {73^o}\sin {167^o} = $

$\sqrt {2 + \sqrt {2 + 2\cos 4\theta } } = $

જો $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ તો

જો $cosA + cosB = cosC,\ sinA + sinB = sinC$ હોય તો સમીકરણ $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ = 

જો $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ તો $\cos 2A = $